SKB1-mediated symmetric dimethylation of histone H4R3 controls flowering time in Arabidopsis.
نویسندگان
چکیده
Plant flowering is a crucial developmental transition from the vegetative to reproductive phase and is properly timed by a number of intrinsic and environmental cues. Genetic studies have identified that chromatin modification influences the expression of FLOWERING LOCUS C (FLC), a MADS-box transcription factor that controls flowering time. Histone deacetylation and methylation at H3K9 and H3K27 are associated with repression of FLC; in contrast, methylation at H3K4 and H3K36 activates FLC expression. However, little is known about the functions of histone arginine methylation in plants. Here, we report that Arabidopsis Shk1 binding protein 1 (SKB1) catalyzes histone H4R3 symmetric dimethylation (H4R3sme2). SKB1 lesion results in upregulation of FLC and late flowering under both long and short days, but late flowering is reversed by vernalization and gibberellin treatments. An skb1-1flc-3 double mutant blocks late-flowering phenotype, which suggests that SKB1 promotes flowering by suppressing FLC transcription. SKB1 binds to the FLC promoter, and disruption of SKB1 results in reduced H4R3sme2, especially in the promoter of FLC chromatin. Thus, SKB1-mediated H4R3sme2 is a novel histone mark required for repression of FLC expression and flowering time control.
منابع مشابه
Histone H4R3 Methylation Catalyzed by SKB1/PRMT5 Is Required for Maintaining Shoot Apical Meristem
The shoot apical meristem (SAM) is the source of all of the above-ground tissues and organs in post-embryonic development in higher plants. Studies have proven that the expression of genes constituting the WUSCHEL (WUS)-CLAVATA (CLV) feedback loop is critical for the SAM maintenance. Several histone lysine acetylation and methylation markers have been proven to regulate the transcription level ...
متن کاملArabidopsis floral initiator SKB1 confers high salt tolerance by regulating transcription and pre-mRNA splicing through altering histone H4R3 and small nuclear ribonucleoprotein LSM4 methylation.
Plants adapt their growth and development in response to perceived salt stress. Although DELLA-dependent growth restraint is thought to be an integration of the plant's response to salt stress, little is known about how histone modification confers salt stress and, in turn, affects development. Here, we report that floral initiator Shk1 kinase binding protein1 (SKB1) and histone4 arginine3 (H4R...
متن کاملStructural insights into protein arginine symmetric dimethylation by PRMT5.
Symmetric and asymmetric dimethylation of arginine are isomeric protein posttranslational modifications with distinct biological effects, evidenced by the methylation of arginine 3 of histone H4 (H4R3): symmetric dimethylation of H4R3 leads to repression of gene expression, while asymmetric dimethylation of H4R3 is associated with gene activation. The enzymes catalyzing these modifications shar...
متن کاملTrans-tail regulation of MLL4-catalyzed H3K4 methylation by H4R3 symmetric dimethylation is mediated by a tandem PHD of MLL4.
Mixed-lineage leukemia 4 (MLL4; also called MLL2 and ALR) enzymatically generates trimethylated histone H3 Lys 4 (H3K4me3), a hallmark of gene activation. However, how MLL4-deposited H3K4me3 interplays with other histone marks in epigenetic processes remains largely unknown. Here, we show that MLL4 plays an essential role in differentiating NT2/D1 stem cells by activating differentiation-specif...
متن کاملRegulation of flowering time by the protein arginine methyltransferase AtPRMT10.
In plants, histone H3 lysine methyltransferases are important in gene silencing and developmental regulation; however, the roles of histone H4 methylation in plant development remain unclear. Recent studies found a type II histone arginine methyltransferase, AtPRTM5, which is involved in promoting growth and flowering. Here, we purified a dimerized plant-specific histone H4 methyltransferase, p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The EMBO journal
دوره 26 7 شماره
صفحات -
تاریخ انتشار 2007